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The total number of marks available is 100.
You must write down all the stages in your working.
You are permitted to use a scientific or graphical calculator in this paper.
Final answers should be given correct to three significant figures where appropriate.

Section A

1. (3)Solve the inequality
3px` 2q ą 2´ x.

Solution

3px` 2q ą 2´ xñ 3x` 6 ą 2´ x

ñ 4x ą ´4

ñ x ą ´1.

2. (4)A particle moves in a straight line. Its velocity, v ms´1, t seconds after passing a point
O is given by the equation

v “ 6` 3t2.

Find the distance travelled between the times t “ 1 and t “ 3.

Solution

v “ 6` 3t2 ñ s “ 6t` t3 ` c,

where c is an arbitrary constant. Hence

distance travelled “ p6ˆ 3` 33
` cq ´ p6ˆ 1` 13

` cq

“ p45` cq ´ p7` cq

“ 38 m.
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3. (3)A circle has equation
x2
` y2 ´ 4x´ 6y ` 3 “ 0.

Find the coordinates of the centre and the radius of the circle.

Solution

x2
` y2 ´ 4x´ 6y ` 3 “ 0

ñ x2
´ 4x` y2 ´ 6y “ ´3

ñ px2
´ 4x` 4q ` py2 ´ 6y ` 9q “ ´3` 4` 9

ñ px´ 2q2 ` py ´ 3q2 “ 10;

hence, the centre of the circle is p2, 3q and the radius is
?

10.

4. (5)Find all the values of x in the range 0˝ ă x ă 360˝ that satisfy

sinx “ ´4 cosx.

Solution

sinx “ ´4 cosxñ
sinx

cosx
“ ´4

ñ tanx “ ´4

ñ x “ 104.036 243 5, 284.036 243 5 (FCD)

ñ x “ 104, 284 (3 sf).

5. A car is travelling along a motorway at 30 ms´1. At the moment that it passes a point
A the brakes are applied so that the car decelerates with constant deceleration. When
it reaches a point B, where AB “ 300 m, the speed of the car is 10 ms´1.

Calculate

(a) (3)the constant deceleration,

2
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Solution

s “ 300, u “ 30, v “ 10, a “?, t “?: we use v2 “ u2 ` 2as

102
“ 302

` 2ˆ aˆ 300 ñ 100 “ 900` 600a

ñ 600a “ ´800

ñ a “ ´11
3
;

hence, the constant deceleration is 11
3

ms´2.

(b) (2)the time taken to travel from A to B.

Solution

We use v “ u` at:

10 “ 30` p´11
3
qtñ ´4

3
t “ ´20

ñ t “ 15 s.

6. (4)Find the equation of the tangent to the curve

y “ x3
´ 3x` 4

at the point p2, 6q.

Solution

y “ x3
´ 3x` 4 ñ

dy

dx
“ 3x2

´ 3

and

x “ 2 ñ
dy

dx
“ 9.

Hence, the equation of the tangent is

y ´ 6 “ 9px´ 2q ñ y ´ 6 “ 9x´ 18

ñ y “ 9x´ 12.

7. (7)Use calculus to find the x-coordinate of the minimum point on the curve

y “ x3
´ 2x2

´ 15x` 30.

3
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Show your working clearly, giving the reasons for your answer.

Solution

y “ x3
´ 2x2

´ 15x` 30 ñ
dy

dx
“ 3x2

´ 4x´ 15.

Now,

dy

dx
“ 0 ñ 3x2

´ 4x´ 15 “ 0

add to: ´4
multiply to: p`3q ˆ p´15q “ ´45

*

´ 9, `5

ñ 3x2
´ 9x` 5x´ 15 “ 0

ñ 3xpx´ 3q ` 5px´ 3q “ 0

ñ p3x` 5qpx´ 3q “ 0

ñ 3x` 5 “ 0 or x´ 3 “ 0

ñ x “ ´5
3

or x “ 3.

Now,
dy

dx
“ 3x2

´ 4x´ 15 ñ
d2y

dx2
“ 6x´ 4.

Next,

x “ ´5
3
ñ

d2y

dx2
“ ´14

and this is a local maximum but

x “ 3 ñ
d2y

dx2
“ 14

and this is a local minimum.

8. The figure shows the graphs of

y “ 4x´ x2 and y “ x2
´ 4x` 6.

4
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(a) (3)Use an algebraic method to find the x-coordinates of the points where the curves
intersect.

Solution

4x´ x2
“ x2

´ 4x` 6 ñ 2x2
´ 8x` 6 “ 0

ñ 2px2
´ 4x` 3q “ 0

add to: ´4
multiply to: `3

*

´ 3, ´1

ñ 2px´ 1qpx´ 3q “ 0

ñ x “ 1 or x “ 3.

(b) (4)Calculate the area enclosed by the two curves.

Solution

Area “ parea beneath y “ 4x´ x2
q ´ parea beneath x2

´ 4x` 6q

“

ż 3

1

rp4x´ x2
q ´ px2

´ 4x` 6qsdx

“

ż 3

1

p´6` 8x´ 2x2
qdx

“
“

´6x` 4x2
´ 2

3
x3
‰3

x“1

“ p´18` 36` 51
3
q ´ p´6` 4´ 2

3
q

“ 22
3
.

5
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9. The points A, B, and C have coordinates p´1, 1q, p5, 8q, and p8, 3q respectively.

(a) (2)Show that AC “ AB.

Solution

AC “
a

r8´ p´1qs2 ` p3´ 1q2

“
?

81` 4

“
?

85

and

AB “
a

rp5´ p´1qs2 ` p8´ 1q2

“
?

36` 49

“
?

85;

thus, AC “ AB.

(b) (1)Write down the coordinates of M , the midpoint of BC.

Solution

M “

ˆ

5` 8

2
,
8` 3

2

˙

“ p61
2
, 51

2
q.

(c) (2)Show that the lines BC and AM are perpendicular.

Solution

Gradient of BC “
3´ 8

8´ 5

“ ´5
3

and

gradient of AM “
51
2
´ 1

61
2
´ p´1q

“
41
2

71
2

“ 3
5
.

As
gradBC ˆ gradAM “ ´1,

BC and AM are perpendicular.

6



Dr Oliver 
Mathematics 

 
Dr Oliver 

Mathematics 
 

Dr Oliver 
Mathematics 

 
Dr Oliver 

Mathematics 
 

Dr Oliver 
Mathematics 

 
Dr Oliver 

Mathematics 

(d) (2)Find the equation of the line AM .

Solution

The equation of the line AM is

y ´ 1 “ 3
5
px` 1q ñ y ´ 1 “ 3

5
x` 3

5

ñ y “ 3
5
x` 13

5
.

10. (a) (5)By drawing suitable graphs on the same axes, indicate the region for which the
following inequalities hold. You should shade the region which is not required.

2x` 3y ď 12

2x` y ď 8

y ě 0

x ě 0.

Solution

7
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x

y

O 1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

(b) (2)Find the maximum value of x` 3y subject to these conditions.

Solution

Two obvious methods. The first is to go around the polygon and determine
x` 3y at its vertices. The second is to go x` 3y “? and translate this line out
and upwards: x ` 3y “ 0, x ` 3y “ 0.5, x ` 3y “ 1, . . . , until we reach the
very last point on its vertices.

8
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x

y

O 1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

x “ 0, y “ 4 ñ x` 3y “ 12.

Section B

11. (a) You are given that
fpxq “ x3

´ 3x2
´ 4x.

(i) (4)Find the three points where the curve y “ fpxq cuts the x-axis.

Solution

x3
´ 3x2

´ 4x “ 0 ñ xpx2
´ 3x´ 4q “ 0

9
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add to: ´4
multiply to: ´3

*

´ 4, `1

ñ xpx´ 4qpx` 1q “ 0

ñ x “ ´1, x “ 0, or x “ 4.

(ii) (1)Sketch the graph of y “ fpxq.

Solution

x

y

O 4´1

(b) You are given that
gpxq “ x3

´ 3x2
´ 4x` 12.

10
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(i) (2)Find the remainder when gpxq is divided by px` 1q

Solution
We use synthetic division:

´1 1 ´3 ´4 12
Ó ´1 ´3 0
1 ´4 0 12

Hence, there is a remainder of 12.

(ii) (1)Show that px´ 2q is a factor of gpxq.

Solution

2 1 ´3 ´4 12
Ó 2 ´2 ´12
1 ´1 ´6 0

Hence, because there is no remainder, px´2q is a factor of x3´3x2´4x`12.

(iii) (4)Hence solve the equation gpxq “ 0.

Solution

x3
´ 3x2

´ 4x` 12 “ 0 ñ px´ 2qpx2
´ x´ 6q “ 0

add to: ´1
multiply to: ´6

*

´ 3, `2

ñ px´ 2qpx´ 3qpx` 2q “ 0

ñ x “ ´2, x “ 2, or x “ 3.

12. The work-force of a large company is made up of males and females in the ratio 9 : 11.
One third of the male employees work part-time and one half of the female employees
work part-time.

8 employees are chosen at random.

11
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Find the probability that

(a) (2)all are males,

Solution

Ppall are malesq “ p 9
20
q
8

“ 1.681 512 539ˆ 10´3 (FCD)

“ 1.68ˆ 10´3 (3 sf).

(b) (4)exactly 5 are females,

Solution

Ppexactly 5 are femalesq “

ˆ

8

5

˙

p11
20
q
5
p 9
20
q
3

“ 0.256 826 016 6 (FCD)

“ 0.257 (3 sf).

(c) (6)at least 2 work part-time.

Solution

Well,

MPT : MFT : WPT : WFT “ 3 : 6 : 5.5 : 5.5

“ 6 : 12 : 11 : 11

and so
PT : FT “ 17 : 23.

Hence,

Ppat least 2 work part-timeq

“ 1´ Pp0 work part-timeq ´ Pp1 works part-timeq

“ 1´ p23
40
q
8
´

ˆ

8

1

˙

p23
40
q
7
p17
40
q

“ 0.917 393 913 9 (FCD)

“ 0.917 (3 sf).

12



Dr Oliver 
Mathematics 

 
Dr Oliver 

Mathematics 
 

Dr Oliver 
Mathematics 

 
Dr Oliver 

Mathematics 
 

Dr Oliver 
Mathematics 

 
Dr Oliver 

Mathematics 

13. In the pyramid OABC,

• OA “ OB “ 37 cm,

• OC “ 40 cm,

• CA “ CB “ 20 cm, and

• AB “ 24 cm

M is the midpoint of AB.

Calculate

(a) (3)the lengths OM and CM ,

Solution

OM “
?

372 ´ 122

“
?

1 225

“ 35 cm

and

CM “
?

202 ´ 122

“
?

256

“ 16 cm.

13
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(b) (4)the angle between the line OC and the plane ABC,

Solution

cosOCM “
402 ` 162 ´ 352

2ˆ 40ˆ 16
ñ cosOCM “ 631

1 280

ñ =OCM “ 60.464 103 62 (FCD)

ñ =OCM “ 60.5˝ (3 sf).

(c) (5)the volume of the pyramid.

Solution

Height of the pyramid “ 40 sin 60.464 . . .˝ .

Now,

area of the base “ 1
2
ˆ 16ˆ 24

“ 192 cm2

and, finally,

volume of the pyramid “ 1
3
Ah

“ 1
3
ˆ 192ˆ 40 sin 60.464 . . .

“ 2 227.320 363 (FCD)

“ 2 230 cm3 (3 sf).

14. An extending ladder has two positions. In position A, the length of the ladder is x metres
and, when the foot of the ladder is placed 2 metres from the base of a vertical wall, the
ladder reaches y metres up the wall.

14
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In position B, the ladder is extended by 0.95 metres and it reaches an extra 1.05 metres
up the wall.

The foot of the ladder remains 2 m from the base of the wall.

(a) (2)Use Pythagoras’ theorem for position A and position B to write down two equations
in x and y.

Solution

For A,
22
` y2 “ x2

and, for B,
22
` py ` 1.05q2 “ px` 0.95q2.

(b) (3)Hence show that
2.1y “ 1.9x´ 0.2.

Solution

22
` py ` 1.05q2 “ px` 0.95q2

ñ 22
` py2 ` 2.1y ` 1.102 5q “ px2

` 1.9x` 0.902 5q

ñ 2.1y ` 1.102 5 “ 1.9x` 0.902 5

ñ 2.1y “ 1.9x´ 0.2,

as required.

15
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(c) (7)Using these equations, form a quadratic equation in x.
Hence find the values of x and y.

Solution

22
` y2 “ x2

ñ 4` r 1
2.1
p1.9x´ 0.2qs2 “ x2

ñ 4` 1
4.41
p3.61x2

´ 0.76x` 0.04q “ x2

ñ 4` p361
441

x2
´ 76

441
x` 4

441
q “ x2

ñ 80
441

x2
` 76

441
x´ 4 4

441
“ 0

ñ 80x2
` 76x´ 1 768 “ 0

ñ 4p20x2
` 19x´ 442q “ 0

add to: `19
multiply to: p`20q ˆ p´442q “ ´8 840

*

´ 85, `104

ñ 4r20x2
´ 85x` 104x´ 442s “ 0

ñ 4r5xp4x´ 17q ` 26p4x´ 17qs “ 0

ñ 4p5x` 26qp4x´ 17q “ 0

ñ 5x` 26 “ 0 or 4x´ 17 “ 0

ñ x “ ´51
5

or x “ 41
4
;

as x ą 0, x “ 41
4

and y “ 33
4
.

16


