Dr Oliver Mathematics OCR FMSQ Additional Mathematics 2007 Paper 2 hours

The total number of marks available is 100 .
You must write down all the stages in your working.
You are permitted to use a scientific or graphical calculator in this paper.
Final answers should be given correct to three significant figures where appropriate.

Section A

1. Solve the inequality

$$
3(x+2)>2-x .
$$

Solution

$$
\begin{aligned}
3(x+2)>2-x & \Rightarrow 3 x+6>2-x \\
& \Rightarrow 4 x>-4 \\
& \Rightarrow \underline{\underline{x>-1}} .
\end{aligned}
$$

2. A particle moves in a straight line. Its velocity, $v \mathrm{~ms}^{-1}, t$ seconds after passing a point O is given by the equation

$$
v=6+3 t^{2}
$$

Find the distance travelled between the times $t=1$ and $t=3$.

Solution

$$
v=6+3 t^{2} \Rightarrow s=6 t+t^{3}+c,
$$

where c is an arbitrary constant. Hence

$$
\begin{aligned}
\text { distance travelled } & =\left(6 \times 3+3^{3}+c\right)-\left(6 \times 1+1^{3}+c\right) \\
& =(45+c)-(7+c) \\
& =\underline{\underline{38 \mathrm{~m}}} .
\end{aligned}
$$

3. A circle has equation

$$
\begin{equation*}
x^{2}+y^{2}-4 x-6 y+3=0 . \tag{3}
\end{equation*}
$$

Find the coordinates of the centre and the radius of the circle.

Solution

$$
\begin{aligned}
& x^{2}+y^{2}-4 x-6 y+3=0 \\
\Rightarrow & x^{2}-4 x+y^{2}-6 y=-3 \\
\Rightarrow & \left(x^{2}-4 x+4\right)+\left(y^{2}-6 y+9\right)=-3+4+9 \\
\Rightarrow & (x-2)^{2}+(y-3)^{2}=10
\end{aligned}
$$

hence, the centre of the circle is $\underline{\underline{(2,3)}}$ and the radius is $\underline{\underline{\sqrt{10}}}$.
4. Find all the values of x in the range $0^{\circ}<x<360^{\circ}$ that satisfy

$$
\begin{equation*}
\sin x=-4 \cos x \tag{5}
\end{equation*}
$$

Solution

$$
\begin{aligned}
\sin x=-4 \cos x & \Rightarrow \frac{\sin x}{\cos x}=-4 \\
& \Rightarrow \tan x=-4 \\
& \Rightarrow x=104.0362435,284.0362435(\mathrm{FCD}) \\
& \Rightarrow x=104,284(3 \mathrm{sf}) .
\end{aligned}
$$

5. A car is travelling along a motorway at $30 \mathrm{~ms}^{-1}$. At the moment that it passes a point A the brakes are applied so that the car decelerates with constant deceleration. When it reaches a point B, where $A B=300 \mathrm{~m}$, the speed of the car is $10 \mathrm{~ms}^{-1}$.

Calculate
(a) the constant deceleration,

Solution

$s=300, u=30, v=10, a=$?, $t=?$: we use $v^{2}=u^{2}+2 a s$

$$
\begin{aligned}
10^{2}=30^{2}+2 \times a \times 300 & \Rightarrow 100=900+600 a \\
& \Rightarrow 600 a=-800 \\
& \Rightarrow a=-1 \frac{1}{3} ;
\end{aligned}
$$

hence, the constant deceleration is $\underline{\underline{1 \frac{1}{3} \mathrm{~ms}^{-2}}}$.
(b) the time taken to travel from A to B.

Solution

We use $v=u+a t$:

$$
\begin{aligned}
10=30+\left(-1 \frac{1}{3}\right) t & \Rightarrow-\frac{4}{3} t=-20 \\
& \Rightarrow t=\underline{\underline{15 \mathrm{~s}}} .
\end{aligned}
$$

6. Find the equation of the tangent to the curve

$$
y=x^{3}-3 x+4
$$

at the point $(2,6)$.

Solution

$$
y=x^{3}-3 x+4 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=3 x^{2}-3
$$

and

$$
x=2 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=9 .
$$

Hence, the equation of the tangent is

$$
\begin{aligned}
y-6=9(x-2) & \Rightarrow y-6=9 x-18 \\
& \Rightarrow \underline{\underline{y=9 x-12} .}
\end{aligned}
$$

7. Use calculus to find the x-coordinate of the minimum point on the curve

$$
\begin{equation*}
y=x^{3}-2 x^{2}-15 x+30 . \tag{7}
\end{equation*}
$$

Show your working clearly, giving the reasons for your answer.

Solution

$$
y=x^{3}-2 x^{2}-15 x+30 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=3 x^{2}-4 x-15
$$

Now,

$$
\begin{aligned}
& \left.\qquad \begin{array}{rl}
\frac{\mathrm{d} y}{\mathrm{~d} x}=0 & \Rightarrow 3 x^{2}-4 x-15=0 \\
\text { add to: } \\
\text { multiply to: } & (+3) \times(-15)=-45
\end{array}\right\}-9,+5 \\
& \\
& \Rightarrow 3 x^{2}-9 x+5 x-15=0 \\
& \\
& \Rightarrow 3 x(x-3)+5(x-3)=0 \\
& \\
& \Rightarrow(3 x+5)(x-3)=0 \\
& \\
& \Rightarrow 3 x+5=0 \text { or } x-3=0 \\
&
\end{aligned} \begin{aligned}
& \Rightarrow x=-\frac{5}{3} \text { or } x=3
\end{aligned}
$$

Now,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-4 x-15 \Rightarrow \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=6 x-4
$$

Next,

$$
x=-\frac{5}{3} \Rightarrow \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=-14
$$

and this is a local maximum but

$$
x=3 \Rightarrow \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=14
$$

and this is a local minimum.
8. The figure shows the graphs of

$$
y=4 x-x^{2} \text { and } y=x^{2}-4 x+6
$$

(a) Use an algebraic method to find the x-coordinates of the points where the curves intersect.

Solution

$$
\begin{aligned}
4 x-x^{2}=x^{2}-4 x+6 & \Rightarrow 2 x^{2}-8 x+6=0 \\
& \Rightarrow 2\left(x^{2}-4 x+3\right)=0 \\
& \left.\begin{array}{rl}
\text { add to: } & -4 \\
\text { multiply to: } & +3
\end{array}\right\}-3,-1 \\
& \Rightarrow 2(x-1)(x-3)=0 \\
& \Rightarrow x=1 \text { or } x=3
\end{aligned} .
$$

(b) Calculate the area enclosed by the two curves.

Solution

$$
\begin{aligned}
\text { Area } & =\left(\text { area beneath } y=4 x-x^{2}\right)-\left(\text { area beneath } x^{2}-4 x+6\right) \\
& =\int_{1}^{3}\left[\left(4 x-x^{2}\right)-\left(x^{2}-4 x+6\right)\right] \mathrm{d} x \\
& =\int_{1}^{3}\left(-6+8 x-2 x^{2}\right) \mathrm{d} x \\
& =\left[-6 x+4 x^{2}-\frac{2}{3} x^{3}\right]_{x=1}^{3} \\
& =\left(-18+36+5 \frac{1}{3}\right)-\left(-6+4-\frac{2}{3}\right) \\
& =\underline{\underline{2 \frac{2}{3}}} .
\end{aligned}
$$

9. The points A, B, and C have coordinates $(-1,1),(5,8)$, and $(8,3)$ respectively.
(a) Show that $A C=A B$.

Solution

$$
\begin{aligned}
A C & =\sqrt{[8-(-1)]^{2}+(3-1)^{2}} \\
& =\sqrt{81+4} \\
& =\sqrt{85}
\end{aligned}
$$

and

$$
\begin{aligned}
A B & =\sqrt{\left[(5-(-1)]^{2}+(8-1)^{2}\right.} \\
& =\sqrt{36+49} \\
& =\sqrt{85} ;
\end{aligned}
$$

thus, $\underline{\underline{A C=A B}}$.
(b) Write down the coordinates of M, the midpoint of $B C$.

Solution

$$
M=\left(\frac{5+8}{2}, \frac{8+3}{2}\right)=\underline{\left.\underline{\left(6 \frac{1}{2}\right.}, 5 \frac{1}{2}\right)} .
$$

(c) Show that the lines $B C$ and $A M$ are perpendicular.

Solution

$$
\text { Gradient of } \begin{aligned}
B C & =\frac{3-8}{8-5} \\
& =-\frac{5}{3}
\end{aligned}
$$

and

$$
\text { gradient of } \begin{aligned}
A M & =\frac{5 \frac{1}{2}-1}{6 \frac{1}{2}-(-1)} \\
& =\frac{4 \frac{1}{2}}{7 \frac{1}{2}} \\
& =\frac{3}{5} .
\end{aligned}
$$

As

$$
\operatorname{grad}_{B C} \times \operatorname{grad}_{A M}=-1,
$$

$B C$ and $A M$ are perpendicular.
(d) Find the equation of the line $A M$.

Solution

The equation of the line $A M$ is

$$
\begin{aligned}
y-1=\frac{3}{5}(x+1) & \Rightarrow y-1=\frac{3}{5} x+\frac{3}{5} \\
& \Rightarrow y=\frac{3}{5} x+1 \frac{3}{5} .
\end{aligned}
$$

10. (a) By drawing suitable graphs on the same axes, indicate the region for which the following inequalities hold. You should shade the region which is not required.

$$
\begin{aligned}
2 x+3 y & \leqslant 12 \\
2 x+y & \leqslant 8 \\
y & \geqslant 0 \\
x & \geqslant 0 .
\end{aligned}
$$

Solution

(b) Find the maximum value of $x+3 y$ subject to these conditions.

Solution

Two obvious methods. The first is to go around the polygon and determine $x+3 y$ at its vertices. The second is to go $x+3 y=$? and translate this line out and upwards: $x+3 y=0, x+3 y=0.5, x+3 y=1, \ldots$, until we reach the very last point on its vertices.

$x=0, y=4 \Rightarrow x+3 y=\underline{\underline{12}}$.

Section B

11. (a) You are given that

$$
\begin{equation*}
\mathrm{f}(x)=x^{3}-3 x^{2}-4 x \tag{4}
\end{equation*}
$$

(i) Find the three points where the curve $y=\mathrm{f}(x)$ cuts the x-axis.

Solution

$$
x^{3}-3 x^{2}-4 x=0 \Rightarrow x\left(x^{2}-3 x-4\right)=0
$$

(ii) Sketch the graph of $y=\mathrm{f}(x)$.

(b) You are given that

$$
\mathrm{g}(x)=x^{3}-3 x^{2}-4 x+12 .
$$

(i) Find the remainder when $\mathrm{g}(x)$ is divided by $(x+1)$

Solution

We use synthetic division:

-1	1	-3	-4	12
	\downarrow	-1	-3	0
	1	-4	0	12

Hence, there is a remainder of $\underline{\underline{12}}$.
(ii) Show that $(x-2)$ is a factor of $\mathrm{g}(x)$.

Solution

| 2 |
| :---: | | 1 | -3 | -4 | 12 |
| :---: | :---: | :---: | :---: |
| | | | |
| \downarrow | 2 | -2 | -12 |
| | 1 | -1 | -6 |

Hence, because there is no remainder, $(x-2)$ is a factor of $x^{3}-3 x^{2}-4 x+12$.
(iii) Hence solve the equation $\mathrm{g}(x)=0$.

Solution

$$
\begin{aligned}
& x^{3}-3 x^{2}-4 x+12=0 \Rightarrow(x-2)\left(x^{2}-x-6\right)=0 \\
&\left.\begin{array}{rl}
\text { add to: } \\
\text { multiply to: } & -6
\end{array}\right\}-3,+2 \\
& \Rightarrow(x-2)(x-3)(x+2)=0 \\
& \Rightarrow x=-2, x=2, \text { or } x=3 .
\end{aligned}
$$

12. The work-force of a large company is made up of males and females in the ratio $9: 11$. One third of the male employees work part-time and one half of the female employees work part-time.

8 employees are chosen at random.

Find the probability that
(a) all are males,

Solution

$$
\begin{aligned}
\mathrm{P}(\text { all are males }) & =\left(\frac{9}{20}\right)^{8} \\
& =1.681512539 \times 10^{-3}(\mathrm{FCD}) \\
& =\underline{\underline{1.68 \times 10^{-3}(3 \mathrm{sf})}} .
\end{aligned}
$$

(b) exactly 5 are females,

Solution

$$
\begin{aligned}
\mathrm{P}(\text { exactly } 5 \text { are females }) & =\binom{8}{5}\left(\frac{11}{20}\right)^{5}\left(\frac{9}{20}\right)^{3} \\
& =0.2568260166(\mathrm{FCD}) \\
& =\underline{\underline{0.257(3 \mathrm{sf})} .}
\end{aligned}
$$

(c) at least 2 work part-time.

Solution

Well,

$$
\begin{aligned}
M_{P T}: M_{F T}: W_{P T}: W_{F T} & =3: 6: 5.5: 5.5 \\
& =6: 12: 11: 11
\end{aligned}
$$

and so

$$
P T: F T=17: 23 .
$$

Hence,

$$
\begin{aligned}
& \mathrm{P}(\text { at least } 2 \text { work part-time }) \\
= & 1-\mathrm{P}(0 \text { work part-time })-\mathrm{P}(1 \text { works part-time }) \\
= & 1-\left(\frac{23}{40}\right)^{8}-\binom{8}{1}\left(\frac{23}{40}\right)^{7}\left(\frac{17}{40}\right) \\
= & 0.9173939139(\mathrm{FCD}) \\
= & \underline{\underline{0.917(3 \mathrm{sf})} .}
\end{aligned}
$$

13. In the pyramid $O A B C$,

- $O A=O B=37 \mathrm{~cm}$,
- $O C=40 \mathrm{~cm}$,
- $C A=C B=20 \mathrm{~cm}$, and
- $A B=24 \mathrm{~cm}$
M is the midpoint of $A B$.

Calculate
(a) the lengths $O M$ and $C M$,

Solution

$$
\begin{aligned}
O M & =\sqrt{37^{2}-12^{2}} \\
& =\sqrt{1225} \\
& =\underline{\underline{35 \mathrm{~cm}}}
\end{aligned}
$$

and

$$
\begin{aligned}
C M & =\sqrt{20^{2}-12^{2}} \\
& =\sqrt{256} \\
& =\underline{\underline{16 \mathrm{~cm}}} .
\end{aligned}
$$

(b) the angle between the line $O C$ and the plane $A B C$,

Solution

$$
\begin{aligned}
\cos O C M=\frac{40^{2}+16^{2}-35^{2}}{2 \times 40 \times 16} & \Rightarrow \cos O C M=\frac{631}{1280} \\
& \Rightarrow \angle O C M=60.46410362(\mathrm{FCD}) \\
& \Rightarrow \angle O C M=60.5^{\circ}(3 \mathrm{sf}) .
\end{aligned}
$$

(c) the volume of the pyramid.

Solution

$$
\text { Height of the pyramid }=40 \sin 60.464 \ldots .
$$

Now,

$$
\begin{aligned}
\text { area of the base } & =\frac{1}{2} \times 16 \times 24 \\
& =192 \mathrm{~cm}^{2}
\end{aligned}
$$

and, finally,

$$
\begin{aligned}
\text { volume of the pyramid } & =\frac{1}{3} A h \\
& =\frac{1}{3} \times 192 \times 40 \sin 60.464 \ldots \\
& =2227.320363(\mathrm{FCD}) \\
& =2230 \mathrm{~cm}^{3}(3 \mathrm{sf}) .
\end{aligned}
$$

14. An extending ladder has two positions. In position A, the length of the ladder is x metres and, when the foot of the ladder is placed 2 metres from the base of a vertical wall, the ladder reaches y metres up the wall.

Position A

Position B

In position B, the ladder is extended by 0.95 metres and it reaches an extra 1.05 metres up the wall.

The foot of the ladder remains 2 m from the base of the wall.
(a) Use Pythagoras' theorem for position A and position B to write down two equations
in x and y.

Solution

For A,

$$
\underline{\underline{2^{2}+y^{2}}=x^{2}}
$$

and, for B,

$$
{\underline{\underline{2^{2}}+(y+1.05)^{2}}=(x+0.95)^{2}}
$$

(b) Hence show that

$$
2.1 y=1.9 x-0.2
$$

Solution

$$
\begin{aligned}
& 2^{2}+(y+1.05)^{2}=(x+0.95)^{2} \\
\Rightarrow & 2^{2}+\left(y^{2}+2.1 y+1.1025\right)=\left(x^{2}+1.9 x+0.9025\right) \\
\Rightarrow & 2.1 y+1.1025=1.9 x+0.9025 \\
\Rightarrow & 2.1 y=1.9 x-0.2
\end{aligned}
$$

as required.
(c) Using these equations, form a quadratic equation in x.

Hence find the values of x and y.

Solution

$$
\begin{aligned}
2^{2}+y^{2}=x^{2} & \Rightarrow 4+\left[\frac{1}{2.1}(1.9 x-0.2)\right]^{2}=x^{2} \\
& \Rightarrow 4+\frac{1}{4.41}\left(3.61 x^{2}-0.76 x+0.04\right)=x^{2} \\
& \Rightarrow 4+\left(\frac{361}{441} x^{2}-\frac{76}{441} x+\frac{4}{441}\right)=x^{2} \\
& \Rightarrow \frac{80}{441} x^{2}+\frac{76}{441} x-4 \frac{4}{441}=0 \\
& \Rightarrow 80 x^{2}+76 x-1768=0 \\
& \Rightarrow 4\left(20 x^{2}+19 x-442\right)=0 \\
\text { add to: } & \\
\text { multiply to: } & (+20) \times(-442)=-8840\}-85,+104 \\
& \Rightarrow 4\left[20 x^{2}-85 x+104 x-442\right]=0 \\
& \Rightarrow 4[5 x(4 x-17)+26(4 x-17)]=0 \\
& \Rightarrow 4(5 x+26)(4 x-17)=0 \\
& \Rightarrow 5 x+26=0 \text { or } 4 x-17=0 \\
& \Rightarrow x=-5 \frac{1}{5} \text { or } x=4 \frac{1}{4} ;
\end{aligned}
$$

as $x>0, x=4 \frac{1}{4}$ and $y=3 \frac{3}{4}$.

