Dr Oliver Mathematics Worked Examples Mass, Density, and Volume 1

From: Edexcel 2018 November Paper 3H (Calculator)

1. Here is a frustum of a cone.

The diagram shows that the frustum is made by removing a cone with height 3.2 cm from a solid cone with height 6.4 cm and base diameter 7.2 cm .

The frustum is joined to a solid hemisphere of diameter 7.2 cm to form the solid \mathbf{S} shown below.

The density of the frustum is $2.4 \mathrm{~g} / \mathrm{cm}^{3}$.
The density of the hemisphere is $4.8 \mathrm{~g} / \mathrm{cm}^{3}$.

Calculate the average density of solid \mathbf{S}.

Solution

Frustum:
We will cut the cone in half: radii are 1.8 cm (top) and 3.6 cm (bottom). Now,
volume of the frustum $=$ volume of the whole cone - volume of the bit removed

$$
\begin{aligned}
& =\frac{1}{3} \pi\left(3.6^{2}\right)(6.4)-\frac{1}{3} \pi\left(1.8^{2}\right)(3.2) \\
& =27.648 \pi-3.456 \pi \\
& =24.192 \pi
\end{aligned}
$$

and

$$
\begin{aligned}
\text { mass } & =\text { density } \times \text { volume } \\
& =2.4 \times 24.192 \pi \\
& =58.0608 \pi .
\end{aligned}
$$

Hemisphere:
Well,

$$
\begin{aligned}
\text { volume of the hemisphere } & =\frac{\text { volume of the sphere }}{2} \\
& =\frac{\frac{4}{3} \pi\left(3.6^{3}\right)}{2} \\
& =\frac{2}{3} \pi\left(3.6^{3}\right) \\
& =31.104 \pi
\end{aligned}
$$

and

$$
\begin{aligned}
\text { mass } & =\text { density } \times \text { volume } \\
& =4.8 \times 31.104 \pi \\
& =149.2992 \pi
\end{aligned}
$$

In total:
The overall mass is

$$
58.0608 \pi+149.2992 \pi=207.36 \pi
$$

and the overall volume is

$$
24.192 \pi+31.104 \pi=55.296 \pi
$$

Hence,

$$
\begin{aligned}
\text { average density } & =\frac{207.36 \pi}{55.296 \pi} \\
& =\underline{\underline{3.75 \mathrm{~g} / \mathrm{cm}^{3}}} .
\end{aligned}
$$

