Dr Oliver Mathematics Mathematics Standard Grade: Credit Level
 2012 Paper 1: Non-Calculator 55 minutes

The total number of marks available is 37 .
You must write down all the stages in your working.

1. Evaluate

$$
7.2-0.161 \times 30
$$

Solution | | |
| ---: | :--- |
| $7.2-0.161 \times 30$ | $=7.2-1.61 \times 3$ |
| | $=7.2-4.83$ |
| | $=\underline{2.37}$ |

2. Expand and simplify

$$
(3 x-2)\left(2 x^{2}+x+5\right) .
$$

$$
\begin{aligned}
& \text { Solution } \\
& \qquad \begin{array}{c}
\qquad \begin{array}{c|ccc}
\times & 2 x^{2} & +x & +5 \\
\hline 3 x & 6 x^{3} & +3 x^{2} & +15 x \\
-2 & -4 x^{2} & -2 x & -20 \\
\hline
\end{array} \\
(3 x-2)\left(2 x^{2}+x+5\right)=\underline{\underline{6 x^{3}}-x^{2}+13 x-20} .
\end{array}
\end{aligned}
$$

3. Change the subject of the formula to m :

$$
L=\frac{\sqrt{m}}{k} .
$$

Solution

$$
\begin{aligned}
L=\frac{\sqrt{m}}{k} & \Rightarrow \sqrt{m}=k L \\
& \Rightarrow \underline{\underline{m=(k L)^{2}}}
\end{aligned}
$$

4. In the diagram,
$P Q$ is the diameter of the circle
$P Q=12$ centimetres, and
$P R=10$ centimetres.

Calculate the length of $Q R$.
Give your answer as a surd in its simplest form.

Solution

Pythagoras' theorem (why?):

$$
\begin{aligned}
P Q^{2}=P R^{2}+Q R^{2} & \Rightarrow 12^{2}=10^{2}+Q R^{2} \\
& \Rightarrow 144=100+Q R^{2} \\
& \Rightarrow Q R^{2}=44 \\
& \Rightarrow Q R=\sqrt{4 \times 11} \\
& \Rightarrow Q R=\sqrt{4} \times \sqrt{11} \\
& \Rightarrow Q R=2 \sqrt{11} \mathrm{~cm}
\end{aligned}
$$

5. Mike is practising his penalty kicks.

Last week, Mike scored 18 out of 30 .
This week, he scored 16 out of 25 .
Has his scoring rate improved?
Give a reason for your answer.

Solution

Last week:

$$
\begin{aligned}
\frac{18}{30} \times 100 \% & =\frac{3}{5} \times 100 \% \\
& =60 \%
\end{aligned}
$$

This week:

$$
\begin{aligned}
\frac{16}{25} \times 100 \% & =16 \times 4 \% \\
& =64 \%
\end{aligned}
$$

Yes, his his scoring rate has improved from 60% to 64%.
6. The diagram shows part of the graph of

$$
y=5+4 x-x^{2}
$$

A is the point $(-1,0)$.
B is the point $(5,0)$.
(a) State the equation of the axis of symmetry of the graph.

Solution

$$
x=\frac{-1+5}{2} \Rightarrow \underline{\underline{x=2}} .
$$

(b) Hence, find the maximum value of $y=5+4 x-x^{2}$.

Solution

$$
x=2 \Rightarrow y=5+8-4=\underline{\underline{9}} .
$$

7. Given

$$
2 x^{2}-2 x-1=0,
$$

show that

$$
x=\frac{1 \pm \sqrt{3}}{2}
$$

Solution

$$
\begin{aligned}
2 x^{2}-2 x-1=0 & \Rightarrow 2 x^{2}-2 x=1 \\
& \Rightarrow x^{2}-x=\frac{1}{2} \\
& \Rightarrow x^{2}-x+\frac{1}{4}=\frac{1}{2}+\frac{1}{4} \\
& \Rightarrow\left(x-\frac{1}{2}\right)^{2}=\frac{3}{4} \\
& \Rightarrow x-\frac{1}{2}= \pm \frac{\sqrt{3}}{2} \\
& \Rightarrow x=\frac{1 \pm \sqrt{3}}{2}
\end{aligned}
$$

as required.
8. The graph below shows two straight lines:

$$
\begin{aligned}
y & =2 x-3 \\
x+2 y & =14 .
\end{aligned}
$$

The lines intersect at the point P.
Find, algebraically, the coordinates of P.

Solution

$$
\begin{aligned}
x+2 y=14 & \Rightarrow x+2(2 x-3)=14 \\
& \Rightarrow x+(4 x-6)=14 \\
& \Rightarrow 5 x=20 \\
& \Rightarrow x=4 \\
& \Rightarrow y=5 ;
\end{aligned}
$$

hence, $\underline{\underline{P(4,5)}}$.
9. Each day, Marissa drives 40 kilometres to work.
(a) On Monday, she drives at a speed of x kilometres per hour.

Find the time taken, in terms of x, for her journey.

```
Solution
40
\underline{x}
```

(b) On Tuesday, she drives 5 kilometres per hour faster.

Find the time taken, in terms of x, for this journey.

$$
\begin{aligned}
& \text { Solution } \\
& \frac{40}{x+5} .
\end{aligned}
$$

(c) Hence find an expression, in terms of x, for the difference in times of the two journeys.
Give this expression in its simplest form.

Solution

$$
\begin{aligned}
\text { Difference } & =\frac{40}{x}-\frac{40}{x+5} \\
& =\frac{40(x+5)}{x(x+5)}-\frac{40 x}{x(x+5)} \\
& =\frac{40(x+5)-40 x}{x(x+5)} \\
& =\frac{(40 x+200)-40 x}{x(x+5)} \\
& =\underline{\underline{\frac{200}{x(x+5)}}} .
\end{aligned}
$$

10. (a) Evaluate $\left(2^{3}\right)^{2}$.

Solution

$$
\left(2^{3}\right)^{2}=2^{6}=\underline{\underline{64}} .
$$

(b) Hence find n, when

$$
\left(2^{3}\right)^{n}=\frac{1}{64}
$$

Solution

$$
\begin{aligned}
\left(2^{3}\right)^{n}=\frac{1}{64} & \Rightarrow 2^{3 n}=\frac{1}{2^{6}} \\
& \Rightarrow 2^{3 n}=2^{-6} \\
& \Rightarrow 3 n=-6 \\
& \Rightarrow n=-2 .
\end{aligned}
$$

11. The sum of consecutive even numbers can be calculated using the following number pattern:

$$
\begin{aligned}
2+4+6 & =3 \times 4=12 \\
2+4+6+8 & =4 \times 5=20 \\
2+4+6+8+10 & =5 \times 6=30
\end{aligned}
$$

(a) Calculate

$$
\begin{equation*}
2+4+\ldots+20 \tag{1}
\end{equation*}
$$

Solution

The line is the eighth of the series:

$$
10 \times 11=\underline{\underline{110}} .
$$

(b) Write down an expression for

$$
2+4+\ldots+n
$$

Solution

$$
2+4+\ldots+n=\underline{\underline{\frac{1}{2}} n\left(\frac{1}{2} n+1\right)}
$$

(c) Hence, or otherwise, calculate

$$
10+12+\ldots+100
$$

Solution

$$
\begin{aligned}
10+12+\ldots+100 & =(2+4+\ldots+100)-(2+4+\ldots+8) \\
& =50 \times 51-20 \\
& =2550-20 \\
& =\underline{\underline{2530}}
\end{aligned}
$$

